

Model Paper

End Semester Examination, December-2023

Program: B. Sc. (Hons.) Agriculture

Semester: I

Course: Fundamentals of Plant Biochemistry and Biotechnology.

Course Code: 13 A.106

Course Objective:

The course objective will be to make the students to;

- 1. Understand the importance of Biochemistry, properties of water, pH and buffer, classification, and structures of carbohydrates, lipids and proteins.
- 2. Comprehend general properties, classification, mechanism of action of enzyme, nucleic Acids and metabolism of carbohydrates and lipids
- 3. Apply concepts and principles of plant biotechnology and tissue culture in crop Improvement.
- 4. Know about transgenic crops, PCR technique and different types of marker and Marker Assisted Selection in crop improvement.

Course Outcomes:

At the end of the course, the students will be able to

- CO1 Comprehend the fundamental aspects of biochemistry, regulation of biological/biochemical processes.
- CO2 Understand synthesis pathways of biomolecules and regulations.
- CO3 Impart knowledge of various techniques/fundamentals of plant tissue culture and the concept of plant biotechnology.
- CO4 Comprehend the concept and application of transgenic crops with different type of molecular markers and Marker Assisted Selection in crop improvement

Unit / Module-1

Section: I (5 Marks questions, only Lower order Thinking -LOT)

SI.NO.	Model Question	Bloom Taxonomy	CO
1	Discuss the zwitter ions nature of amino acids.	Understand	CO1
2	Explain briefly the importance of biochemistry.	Remember	CO1
3	Describe briefly the structure and function of	Understand	CO1
	phospholipids.		
4	Compare between lipids and fatty acids.	Understand	CO1

5	Describe the isoelectric pH of protein and its	Understand	CO1
	importance.		

Section: II (10 Marks questions, both LOT&HOT)

SI.NO.	Model Question	Bloom Taxonomy	CO
1	Distinguish between enzymes and proteins.	Analyse	CO2
2	Explain in detail the structural organisation of proteins.	Analyse	
3	Classify proteins in various ways with suitable examples.	Analyse	CO1
4	Define carbohydrates. Classify them with suitable examples and write their importance.	Remember+ Analyse	CO1
5	Explain the importance of biochemistry in the field of agriculture.	Analyse	CO1

Unit / Module-2

Section: I (5 Marks questions, only Lower order Thinking -LOT)

SI.NO.	Model Question	Blooms	CO
		Taxonomy	
1	Describe the enzymes briefly with their general	Understand	CO2
	properties.		
2	Discuss the A, B and Z DNA.	Understand	CO2
3	Discuss glycolysis briefly.	Understand	CO2
4	Compare between enzymes and protein	Understand	CO2
5	Describe the three major RNA classes; what is each	Remember	CO2
	class's function?		

Section II (10 Marks questions, both LOT&HOT)

SI.NO.	Model Question	Bloom Taxonomy	CO
1	Define enzyme. Explain nomenclature and UBMS	Remember +	CO2
	classification with suitable examples.	Analyse	
2	Explain the different theories proposed for the	Analyse	CO2
	mechanism of enzyme-substrate complex		
	formation.		
3	Explain the process of protein biosynthesis	Analyse	CO2
	(Translation).		
4	Discuss different forms of DNA and the main	Understand	CO2
	features of the B-form of DNA.		
5	Illustrate the TCA cycle with a well-labelled	Apply	CO2
	diagram.		

Unit /Module-3

Section: I (5 Marks questions, only Lower order Thinking -LOT)

SI.N	Model Question	Bloom	CO
O.		Taxonomy	
1	Define totipotency. Explain briefly the application	Remember+	CO3
	of plant tissue culture.	Understand	
2	Define micropropagation. Explain briefly the	Remember+	CO3
	advantages of vegetative propagation.	Understand	
3	Define the synthetic seed and explain their	Understand	CO3
	significance in crop improvement.		
4	Define embryo culture. Write its importance.	Remember	CO3
5	Define totipotency. Explain briefly the application	Remember+	CO3
	of plant tissue culture.	Understand	

Section: II (10/15 Marks questions, both LOT&HOT)

SI.NO.	Model Question	Bloom Taxonomy	CO
1	Diagrammatically represent the pollen culture	Apply	CO3
	and its major advantages.		
2	Briefly discuss the application of somatic	Understand	CO3
	hybridization.		
3	Explain the basic requirements and techniques	Analyse	CO3
	of plant tissue culture.		
4	How to develop somaclonal variation in plants	Apply	CO3
	and is useful in crop improvement.		
5	Explain in detail the application and merits of	Analyse	CO3
	micropropagation over conventional plant		
	breeding methods.		

Unit /Module- 4

Section: I (5 Marks questions, only Lower order Thinking -LOT)

SI.NO.	Model Question		CO
1	What are molecular markers? Explain briefly	Remember	CO4
	their role in plant breeding.		
2	Discuss the vectors used in genetic	Understand	CO4
	engineering.		
3	Explain marker-assisted breeding in crop	Understand	CO4
	improvement.		
4	Discuss the term recombinant DNA	Understand	CO4
	technology.		

5	Briefly describe the mechanism for the	Remember	CO4
	regulation of transgenic crops.		1

Section II (10 Marks questions, both LOT&HOT)

SI.NO.	Model Question		
1	Discuss the various applications of transgenic	Understand	CO4)
	plants and the problems encountered in their		
	production.		
2	Explain Agrobacterium-mediated Gene	Apply	(CO4)
	transfer with a suitable diagram.		
3	Explain the marker-assisted breeding method		(CO4)
	and discuss briefly its role in crop	Analyse	
	improvements with		
	suitable examples.		
4	Explain polymerase chain reaction with its	Analyse	(CO4)
	major types and applications in plant		
	breeding.		
5	Enlist the various types of molecular markers,	Understand	(CO4)
	describe their features in detail, and compare		
	their attributes.		

Prepared By: Reviewed By:

Mrs. Poonam Singh

Dr. R.P. Singh Ratan

<u>Disclaimer</u>: - This is a Model Paper. The Question in End semester examination will differ from the Model Paper. This Model paper is meant for practice only.